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Abstract

The stiffness and strength properties of foams with tetrakaidecahedral unit cells are

evaluated using both finite element-based micromechanics and analytical methods. The
finite element analysis models the varying cross section of the struts exactly. The ana-

lytical methods assume the struts have constant cross section along the length.

Equivalent constant cross section of the strut can be obtained by either matching the

densities or by using harmonic averaging of the stiffness properties. A method in which

the moment of inertia of the cross section is averaged is also considered. The com-

parison of properties obtained for the different equivalent constant cross-section foams

shows the inability of the various averaging schemes to match the shear modulus and

the strength properties, while the Young’s modulus matches to some extent. The failure
of the weakest cross section in the varying cross-section strut of the unit cell leads to a

lower tensile strength in the actual foam compared to the uniform cross-section foams.

The results suggest that although the use of simple analytical models for foam proper-

ties are attractive, they often lead to erroneous results, and hence exact modeling of

the strut geometry is key to estimating the stiffness and strength properties of foams

and other cellular solids.
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Introduction

Currently, foams (Figure 1) of all types—polymeric, metallic, and ceramic

foams—are used in sandwich construction. For example, metallic foams are used

in thermal protection systems.2 Ceramic foam sandwich construction is envisioned

for the thermal protection systems of future space vehicles.3,4 Cooling systems for

aircraft and rocket engines use sandwich construction with open cell metallic foams

for passing the cooling fluid.5 With the recent advances in manufacturing tech-

niques of foams and cellular solids, it is possible to tailor the properties of the foam

based on their microstructural details. Thus, it is not necessary to only resort to

experimental techniques to characterize the foams. Numerical simulations can be

used to identify microstructures for achieving desired properties. Some of the

properties that can be obtained using numerical simulations are stiffness, strength,

fracture toughness, and thermal conductivity. Although computational methods

such as finite element (FE)-based micromechanics are accurate and model very

realistic microstructures, they are time-consuming. On the other hand, simple ana-

lytical methods can be used in the preliminary stages of design and also in optimiz-

ing the foam properties. When one is interested in determining the variability in the

foam properties, a large number of Monte Carlo simulations are necessary for

propagating uncertainties in the foam microstructure. In such cases, simple ana-

lytical methods are cost-effective as they can be used for thousands or even millions

of analyses.

In this paper, we evaluate the analytical and FE models for stiffness and strength

properties of tetrakaidecahedral foams. Analytical models are based on simplifying

assumptions and often they may not yield accurate results. The stiffness properties

such as elastic constants are based on integration of the properties and geometric

information over the volume of the unit cell of the foam. In that case, analytical

methods can yield reasonable estimates of the elastic constants of the foam. On the

other hand, strength and fracture toughness are based on local failure of foam

ligaments. In such situations, analytical models are found to be inadequate.

Figure 1. Photomicrographs of foams used in insulation of external fuel tanks of space

vehicles. (a) BX-265 and (b) NCFI24-124.1
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In this paper, we develop an FE-based micromechanical analysis for estimating

the elastic constants and failure stresses of foams with tetrakaidecahedral unit cells.

The results from the FE analysis which can model the foam ligaments accurately

are compared with models including analytical models that approximate the cross

section of the ligaments. The results indicate the importance of accurately modeling

the foam microstructure for predicting the stiffness and strength of the foam, espe-

cially the strength properties.

FE modeling of a tetrakaidecahedron cell

The tetrakaidecahedron is a polyhedron with 14 faces, 24 vertices, and 36 edges. It

is obtained by truncating the corners of an octahedron, and hence also referred to

as a truncated octahedron. The equisided tetrakaidecahedral cell, obtained by

truncating a cube, is a 14-faced figure made up of 8 hexagonal faces and

6 square faces. The 36 struts or ligaments, in an equisided tetrakaidecahedron,

are equal in length. The cross section of the strut, which is an equilateral triangle,

varies along the length.

An FE model of the tetrakaidecahedral unit cell has been described by

Thiyagasundaram et al.6,7 is shown in Figure 2. The principal directions, X, Y,

and Z are assumed to be along the centers of the six squares. The six squares

correspond to the front and back, the left and right, and the top and bottom,

respectively. They used both Euler-Bernoulli beam and shear deformable beam

elements to model the struts. Two different types of cross sections can be con-

sidered: equilateral triangle and three-cusped equilateral triangle. It was found

that the classical beam element overpredicts the stiffness of the foam and shear

deformable beam element is required, especially if the slenderness ratio of the foam

ligaments is less than 10.

Figure 2. Equisided tetrakaidecahedron—beam model with 24 struts.
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Periodic boundary conditions were imposed on the nodes of the unit cell to

achieve a given state of macrostrain. The periodic boundary conditions are applied

to the three translational and three rotational degrees of freedom of the opposite

pairs of nodes on the squares of the unit cell as shown in Figure 3. For an applied

deformation gradient "ij ¼ ui, j ¼ �"ij, the nonzero periodic boundary conditions are

given by

�"ij ¼
1

V
u
ðþj Þ
i ÿ u

ðÿj Þ
i

� �

Aj ð1Þ

where u
ðþj Þ
i and u

ðÿj Þ
i are the ui displacement on the pair of opposite faces normal to

the j-direction, Aj is the area of the face normal to the j-direction in the unit cell,

Figure 3. Nodal pairs subjected to periodic boundary conditions. The dashed lines indicate

corresponding pairs. (a) Top and Bottom (b) Right and left and (c) front and back.
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and V is the volume of the unit cell. For example, the periodic boundary condition

corresponding to the normal strains is given by

�"ii ¼
u

þið Þ
i ÿ u

ÿið Þ
i

� �

ai
i ¼ 1, 2, 3; no summation over ið Þ ð2Þ

where ai is the dimension of the unit cell in the ith direction. The periodic boundary

conditions corresponding to the rotational degrees of freedom take the form

�
þjð Þ
i ÿ �

ÿjð Þ
i

� �

¼ 0 i, j ¼ 1, 3ð Þ ð3Þ

Derivation of the elastic constants

The representative volume element (RVE) shown in Figure 4 of the foam is a

cuboid and because of symmetry about the three planes, the foam will behave as

an orthotropic material in macroscale. In the equivalent orthotropic material, the

principal material directions are parallel to the edges of the cuboid and the normal

and shear deformations are uncoupled. The macroscale stress–strain relations of

the foam are written as

�1

�2

�3

8

>

<

>

:

9

>

=

>

;

¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

2

6

4

3

7

5

"1

"2

"3

8

>

<

>

:

9

>

=

>

;

�23 ¼ G23
23, �31 ¼ G31
23, �23 ¼ G23
23

ð4Þ

The details of the micromechanics approach for determining the elastic con-

stants Cij can be found in Reference [6]. Here, we summarize the key steps for

the sake of completion and also for subsequent discussion. When the RVE is sub-

jected to three independent deformations such that in each case only one normal

strain is nonzero and other two normal strains are zero (e.g. "1=1, "2=0, and

"3=0), the corresponding force resultants in the three faces of the unit cell normal

to the 1, 2, and 3 directions are, respectively, F11, F21, and F31. Then, the corres-

ponding macrostresses are obtained as

�1 ¼
F11

A1

, �2 ¼
F21

A2

, �3 ¼
F31

A3

ð5Þ
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where A1, A2, and A3 are areas normal to the 1, 2, and 3 directions. Substituting for

the macrostresses and strains in equation (4) we obtain

C11 ¼ F11, C21 ¼ F21, C31 ¼ F31 ð6Þ

The second and third columns of the [C] matrix are filled following similar

procedures.6 In order to determine the shear modulus, we again apply the corres-

ponding periodic boundary conditions. The shear modulus Gij is determined by

equating the strain energy in the unit cell obtained from the FE analysis to the

shear strain energy in terms of macroscale shear strains

U ¼ 1

2
Gij


2
ijV or Gij ¼

2U


2
ijV

ð7Þ

Determination of strength properties

The micromechanics procedures described above can be used to determine the

multiaxial strength properties of the foam. The method called the direct

Figure 4. Representative volume element (RVE) showing force resultants in the three

directions when subjected to normal strain in the 1-direction on the two faces given by x= a

and x=ÿa.
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micromechanics method (DMM) has been used to determine the failure envelopes of

composite materials8 and cellular materials.9 Consider a state of macrostress given

by {�a}={�x �y �z �yz �zx �xy}
T. The macrostrains due to the above stress state can

be calculated as {"}= [C]ÿ1{�}. The above macrostrain {"} can be represented as

{"}={"x "y "z gyz gzx gxy}
T. We use the periodic boundary conditions in equation (2)

to create the above state of macrostrains in the unit cell. Then, the FE-based micro-

mechanics is used to determine the microstresses at various points at several cross

sections of the 24 struts in the unit cell. Assuming we have a failure criterion for the

strut material, we can calculate a load factor for each point defined as

�i ¼
� f
e

�i
e

ð8Þ

where �i is defined is the load factor for the ith point, � f
e is the strength of the strut

material in terms of an effective stress, and �f
e is the corresponding effective stress at

the ith point. In fact �i can be thought of as a factor of safety for the given applied

macrostress state {�a}. For example, the effective stress is the von Mises stress for

ductile materials; whereas, the maximum principal stress will be the effective stress

for brittle materials. One can calculate the actual load �*{�a} that will cause the

first failure in any of the struts. The load factor �* is obviously the minimum of all

�’s, that is

�� ¼ minð�1, �2, � � �Þ ð9Þ

Then the state of stress that will cause failure of the foam is given by

��
a

� 	

¼ �� �af g ð10Þ

A failure envelope can be created by considering several stress states {�a}. For

example, the uniaxial strength in the 1-direction could be determined by using

{�a}={1 0 0 0 0 0}T. A biaxial failure envelope in the (�1 – �2) plane can be

obtained using

�af g ¼ cos� sin� 0 0 0 0
� 	T ð11Þ

where the phase angle � defines the stress ratio �2/�1=tan �. By varying � from 0

to 2p, one can construct the failure envelope in the (�1 – �2) plane.

One should note that the aforementioned approach for determining the strength

will not be valid for compressive strength. Cellular materials fail due to buckling

of the struts under compressive loading. Analysis of a single unit cell is not

sufficient to understand the compressive behavior of foams. Chung and Waas10

studied the compressive response of cellular media using both experimental and
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computational simulation. Their FE models captured the progressive localization

of deformation and ensuing variation of stiffness of the foam.

Analytical models

An analytical model for foams with equisided tetrahedrons as unit cell was devel-

oped by Zhu et al.11 The method was modified for foams with elongated tetra-

kaidecahedral unit cells by Sullivan et al.1 Li et al.12 used energy methods to

calculate the Young’s modulus and Poisson ratios of open cell foams with tetra-

kaidecahedral unit cells. They used their model to perform a parametric study. Sihn

and Roy13 used FE analysis to model the unit cell of open cell carbon foam in great

detail including the anisotropic properties. They varied the microstructural proper-

ties to understand their effects on the macroscopic properties. The expressions for

the Young’s modulus and shear modulus for equisided tetrakaidecahedral foams

derived by Zhu et al. are as follows:

Young’s modulus, E100

1

E100

¼ 1

6
ffiffiffi

2
p 12L2

EA
þ L4

EI

� �

ð12Þ

Poisson ratio, n12

�12 ¼ 0:5
AL2 ÿ 12I

AL2 þ 12I

� �

ð13Þ

Shear modulus, G12

1

G12

¼ 2
ffiffiffi

2
p

L2

EA
þ 2

ffiffiffi

2
p

L4

6EI

8EIþ GJ

5EIþ GJ

� �

ð14Þ

The above formulae assume the cross-sectional properties of the strut, namely,

the axial rigidity, EA; bending rigidity, EI; and torsional rigidity, GJ, to be uniform

in the struts. However, as discussed in the next section, the cross-sectional proper-

ties change drastically over the length of the strut. Hence, we need to perform

further evaluation to determine: (a) the effects of the above simplifying assumption

on the stiffness and strength properties of the foam and (b) the equivalent section

properties that will give reasonable stiffness and strength estimates for a given

microstructure.
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Effect of varying cross section

Experimental observations14 have shown that the strut cross sections in a foam

are not uniform but vary gradually from the center toward the ends as shown in

Figure 5. An example such variation is given by Reference [14]

AðxÞ ¼ A0 f ðxÞ ¼ A0 86
x4

L4
þ x2

L2
þ 1

� �

ð15Þ

where A0 is the area of cross section at the midspan of the strut, L is the length of

the strut, and x is any point along the length of the strut ÿ L
2
� x � þ L

2

ÿ �

. The

second moment of inertia and the polar moment of inertia of the strut cross section

also vary as a function of the position along the strut given by

I xð Þ ¼ I0 86
x

L

� �4

þ x

L

� �2

þ1

� �2

J xð Þ ¼ J0 86
x

L

� �4

þ x

L

� �2

þ1

� �2
ð16Þ

where I0 and J0 are the sectional properties at the midpoint of the strut x=0.

When the strut cross section is an equilateral triangle of side d, the cross-sectional

properties are given by

A ¼
ffiffiffi

3
p

4
d2, I ¼

ffiffiffi

3
p

96
d4, J ¼ A2

5
ffiffiffi

3
p ð17Þ

The variation of A and I are plotted in nondimensional form in Figure 6(a) and

(b), respectively. It should be mentioned that J(x)/J0= I(x)/I0= f 2(x).

Figure 5. Varying of cross section in a strut.14
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Equivalent cross-sectional properties

As discussed earlier, there are some advantages in idealizing a foam as having

constant cross section for the struts. In the following, we will discuss three different

methods of determining the equivalent cross-sectional properties.

Equivalent density method

In this approach, we match the relative densities of the actual foam and the idea-

lized foam. Using the relation of the type given in equation (15), we can derive an

expression for the uniform cross-sectional area as

Aavg ¼
1

L

Z þL=2

ÿL=2

AðxÞdx ¼ A0

Z þ1=2

ÿ1=2

f �ð Þd�, where � ¼ x

L
ð18Þ

Figure 6. Variations of A(x)/A0 and I(x)/I0 along the length of the strut. (a) A(x)/A0 vs. x/L and

(b) I(x)/I0 vs. x/L.
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Once the average cross-sectional area is established, the average cross-sectional

dimensions can be determined. Assuming the cross section as an equilateral tri-

angle, we can obtain the side of the triangle and I and J using equation (17). One

should note that there is no mechanistic explanation for this method.

Harmonic averaging

In the second method, we match the axial, torsional, and bending rigidities of the

actual strut and the idealized strut. Consider the case of axial deformation of the

strut. The axial force P is constant in the strut. We will match the strain energy due

to the axial force in both actual and ideal struts as

P2L

2 �AE
¼
Z þL=2

ÿL=2

P2

2AðxÞEdx ð19Þ

Then, we obtain the cross-sectional area �A of the equivalent struts as

1

�A
¼ 1

A0

Z 1=2

ÿ1=2

1

f ð�Þ d� ð20Þ

The above approximation is exact, as the axial force is constant in the strut in

the actual foam. A similar argument could be made for torsional rigidity also as the

torque remains constant both in the actual foam and idealized foam. The equiva-

lent polar moment of inertia and bending rigidity are derived as

1

�J
¼ 1

J0

Z 1=2

ÿ1=2

1

f 2ð�Þ d� ð21Þ

1

I
¼ 1

I0

Z 1=2

ÿ1=2

1

f 2ð�Þ d� ð22Þ

Equivalent bending rigidity (equivalent-I) approach

In the case of the bending deformation of the strut, the harmonic averaging method

described above may not be accurate, because the bending moment along the

length of the strut need not be constant. The formulae in equations (12) and (14)

indicate that the elastic constants of the foam are strong functions of the flexural

rigidity, EI, of the strut. This is not surprising because irrespective of the stresses

acting on the foam (normal or shear), the foam deforms due to the bending of the

struts. The axial and torsional deformations of the struts are minimal. Hence, it is
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important to model the bending behavior of the strut as accurately as possible in

determining the equivalent cross section. In general, the bending moment along a

strut has a linear variation given by

MðxÞ ¼ M0 þ�M
2x

L
ð23Þ

where M0 is the bending moment at the center of the strut and �M is the difference

in the values of the bending moments at the two ends of the strut. The variation of

M(x) is depicted in Figure 7. Equating the bending energies of the constant and the

varying cross-section struts, we obtain

Z þL=2

ÿL=2

MðxÞð Þ2

2EIðxÞ dx ¼ 1

2EIc

Z þL=2

ÿL=2

MðxÞð Þ2dx ð24Þ

Substituting forM(x) from equation (23), and integrating, we obtain the equiva-

lent moment of inertia of the cross section Ic as

1

Ic
¼ 1þ 1

3

�M

Mo

� �2
 !ÿ1

1

�I
þ 4

�M

Mo

� �2
1

I�

 !

ð25Þ

where

1

�I
¼
Z þ1=2

ÿ1=2

d�

Ið�Þ and
1

I�
¼
Z þ1=2

ÿ1=2

�2

Ið�Þd� ð26Þ

Figure 7. Depiction of linear variation of bending moment along the length of a strut.
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It is to be noted that if the bending moment remains constant along the strut,

that is �M=0, then we obtain Ic ¼ I, which is the harmonic averaging similar to

that for area of cross section A and polar moment of inertia J. When (�M/M0) !
1 (which happens when M0=0), we obtain Ic= I*/12. A graph of variation of Ic
with (�M/M0) is shown in Figure 8. In this example, we have used

I0=5.06208� 10ÿ20m4 in the equation I xð Þ ¼ I0ð86ðxLÞ
4 þ ðx

L
Þ2 þ 1Þ2. For this

case, I ¼ 9:78� 10ÿ20m4 and I� ¼ 3:01� 10ÿ18m4. Thus, we note that the equiva-

lent moment of inertia of the constant cross-section strut could vary from

9.78� 10ÿ20m4 to 25� 10ÿ20m4.

Results and discussion

The methods described above were used to determine the elastic constants and

strength properties and also biaxial failure envelopes of foams with tetrakaideca-

hedral unit cell. The properties of the struts are given in Tables 1 and 2. The cross

section is assumed to be equilateral triangle and the variation of cross-sectional

properties is according to equations (15) and (16). The analyses of the actual foam

as well as the equivalent foams were performed using the ABAQUSÕ FE software.

The strut material was assumed to be isotropic with Young’s modulus equal to

2.34GPa and Poisson’s ratio equal to 0.3. The maximum principal stress theory

was used to determine the failure of the strut material, and the strength was

assumed to be equal to 234MPa. The microstresses in the struts were calculated

Figure 8. Variation of Ic with
�M
Mo

� �

along the length of the strut.
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at 10 cross sections in each strut and at 12 points in each cross section. Thus, the

maximum principal stress was calculated at 2880 points in the unit cell of the foam.

The results are summarized in Table 3. The exact solution corresponds to the

foam with varying cross section. In the varying cross-section model, each strut was

modeled using 10 three-node shear deformable beam elements. The cross section of

each element is assumed to be uniform and the cross-sectional property at the

midpoint of an element was considered as the average property for that element.

In the case of ideal foams with uniform cross-section strut, we need only one beam

element for each strut.

The following observations can be made for the results in Table 3. The

Young’s modulus predicted by the equivalent-density method matches the

Young’s modulus of the actual foam (varying cross-section struts). However,

the other two methods of estimating the uniform cross-section properties do

not yield good results. When it comes to shear modulus, none of the approximate

methods predict the shear modulus correctly. In fact the errors are so large that

one needs to model the struts in detail to obtain the correct shear modulus. This

is an important factor from the view point of sandwich structures because in

sandwich construction the shear modulus of the foam plays a significant role in

the transverse shear stiffness of the panel. All methods predict a Poisson’s ratio

close to 0.5, which indicates that the foam is almost incompressible. Again, all

approximate models with uniform cross-section struts overpredict the tensile

strength of the foam. It is not surprising because, unlike stiffness, the strength

Table 1. Values of side of the equilateral triangle, area of cross sec-

tion, second moment of inertia, and polar moment of inertia at the

midpoint of the varying cross-section strut

d0 0.04� 10ÿ3m

A0 7.34� 10ÿ10m2

I0 5.19� 10ÿ20m4

J0 6.23� 10ÿ20m4

Table 2. Values of side of the equilateral triangle, area of cross sec-

tion, second moment of inertia, and polar moment of inertia of the

equivalent uniform cross-section strut

deqv 0.06� 10ÿ3m

Aeqv 1.5588� 10ÿ9m2

Ieqv 2.3382� 10ÿ19m4

Jeqv 2.8059� 10ÿ19m4

444 Journal of Sandwich Structures and Materials 14(4)

Ö × Ø Ù Ú Û Ü Ý Ý Þ Ü ß Ú à á â ã Ö × ä å æ ç Þ è é æ Ö æ è å ç ê ë ì í î ï ð ñ ò ó ô ð óõ ç ã ö ç Ö ÷ å ø í é ö ù ê ãà ê ú ë î ê Ö û å û ü æ ê ã



is determined by the weakest link in the chain or, in the present case, the weakest

cross section. The uniform cross-section struts have areas that are significantly

above the smallest area of the varying cross-section strut. For example, in the

actual foam, the minimum dimension of the equilateral triangle is given by

dmin=0.4mm. The side of the triangle in the equivalent density foam is daver-

age=0.6mm. Thus, the moment of inertia of the cross section is about five times

that of the corresponding minimum. Furthermore, the stresses for a given bend-

ing moment vary as inverse of d3. Hence, the stresses in the actual foam could be

Figure 9. Comparison of biaxial failure envelopes for different models.

Table 3. Comparison of results for stiffness and strength obtained using different equivalent

cross-section foams

Property

Varying

cross

section

(exact

solution)

Uniform cross section

Equivalent

density

method

Harmonic

averaging

method

Equivalent I method

�M

M0

¼ 0

I ¼ �I
ÿ �

�M

M0

! 1

I ¼ I�ð Þ

Young’s modulus (Pa) 46.645 46.402 19.172 19.328 49.813

Shear modulus (Pa) 9888 14.920 6183 6457 16.500

Poisson’s ratio 0.4986 0.4975 0.4989 0.4988 0.4981

Tensile strength (Pa) 885 2190 NA 2328 2160

Shear strength (Pa) 758 2000 NA 763 647
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3.4 times that in the equivalent foam. In fact the actual tensile strength of the

foam is about 2.5 times less than that predicted by approximate methods. The

equivalent density model overpredicts the shear strength. The equivalent-I models

do a reasonable job in predicting the shear strength, although it should be con-

sidered fortuitous coincidence considering they do not predict the elastic con-

stants or the tensile strength accurately. The biaxial failure envelopes obtained

using various methods are shown in Figure 9. Based on the discussion from

tensile strength, it is not surprising none of the approximate methods could be

closer to the actual failure envelope.

One may note that strength values are not given for the harmonic averaging

method (see Table 3). The reason is as follows. This method directly gives the

equivalent section properties such as A, I, and J which are required for the FE

analysis. There is no unique cross-sectional dimension d (side of the equilateral

triangle) for the given set of cross-sectional properties, and hence one cannot deter-

mine the microstresses in the struts, which govern the failure of the foam.

Conclusions

Analytical models for estimating the elastic constants of foams with tetrakaideca-

hedral unit cells tend to assume that the struts are of uniform cross section to

facilitate easy calculation. An FE analysis taking into account the varying cross

section of the strut was performed to predict the stiffness and strength properties.

Three different approaches were used to determine the equivalent cross-sectional

properties in the uniform strut model. The results indicate that it is possible to

estimate the Young’s moduli and Poisson ratios of the foam using analytical

models. Accurate prediction of the shear modulus and strength properties requires

detailed modeling of the strut. FE-based micromechanics will also have the advan-

tage of modeling the anisotropic and nonlinear behavior of the strut material.
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